2,728 research outputs found

    Pulsed energy power system Patent

    Get PDF
    Pulsed energy power system for application of combustible gases to turbine controlling ac voltage generato

    A radiometer for stochastic gravitational waves

    Full text link
    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the 3rd LIGO science Run (S3). Now I present a new method for obtaining directional upper limits that the LIGO Scientific Collaboration intends to use for future LIGO science runs and that essentially implements a gravitational wave radiometer.Comment: 6 pages, 2 figure

    Detecting a stochastic background of gravitational waves in the presence of non-Gaussian noise: A performance of generalized cross-correlation statistic

    Get PDF
    We discuss a robust data analysis method to detect a stochastic background of gravitational waves in the presence of non-Gaussian noise. In contrast to the standard cross-correlation (SCC) statistic frequently used in the stochastic background searches, we consider a {\it generalized cross-correlation} (GCC) statistic, which is nearly optimal even in the presence of non-Gaussian noise. The detection efficiency of the GCC statistic is investigated analytically, particularly focusing on the statistical relation between the false-alarm and the false-dismissal probabilities, and the minimum detectable amplitude of gravitational-wave signals. We derive simple analytic formulae for these statistical quantities. The robustness of the GCC statistic is clarified based on these formulae, and one finds that the detection efficiency of the GCC statistic roughly corresponds to the one of the SCC statistic neglecting the contribution of non-Gaussian tails. This remarkable property is checked by performing the Monte Carlo simulations and successful agreement between analytic and simulation results was found.Comment: 15 pages, 8 figures, presentation and some figures modified, final version to be published in PR

    Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses

    Get PDF
    An analysis is given of thermoelastic noise (thermal noise due to thermoelastic dissipation) in finite sized test masses of laser interferometer gravitational-wave detectors. Finite-size effects increase the thermoelastic noise by a modest amount; for example, for the sapphire test masses tentatively planned for LIGO-II and plausible beam-spot radii, the increase is less than or of order 10 per cent. As a side issue, errors are pointed out in the currently used formulas for conventional, homogeneous thermal noise (noise associated with dissipation which is homogeneous and described by an imaginary part of the Young's modulus) in finite sized test masses. Correction of these errors increases the homogeneous thermal noise by less than or of order 5 per cent for LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review

    Possible approach to improve sensitivity of a Michelson interferometer

    Full text link
    We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Different from other approaches, the sensitivity improvement does not depend on increasing optical powers or utilizing the quantum properties of light. Moreover the requirements for optical losses and the quantum efficiencies of photodetection systems might be lower than the quantum approaches and the sensitivity improvement is frequency independent in all detection band.Comment: 8 pages, 3 figures, new versio

    Using Full Information When Computing Modes of Post-Newtonian Waveforms From Inspiralling Compact Binaries in Circular Orbit

    Full text link
    The increasing sophistication and accuracy of numerical simulations of compact binaries (especially binary black holes) presents the opportunity to test the regime in which post-Newtonian (PN) predictions for the emitted gravitational waves are accurate. In order to confront numerical results with those of post-Newtonian theory, it is convenient to compare multipolar decompositions of the two waveforms. It is pointed out here that the individual modes can be computed to higher post-Newtonian order by examining the radiative multipole moments of the system, rather than by decomposing the 2.5PN polarization waveforms. In particular, the dominant (l = 2, m = 2) mode can be computed to 3PN order. Individual modes are computed to as high a post-Newtonian order as possible given previous post-Newtonian results.Comment: 15 page

    b-quark decay in the collinear approximation

    Get PDF
    The semileptonic decay of a b-quark, b--> c l nu, is considered in the relativistic limit where the decay products are approximately collinear. Analytic results for the double differential lepton energy distributions are given for finite charm-quark mass. Their use for the fast simulation of isolated lepton backgrounds from heavy quark decays is discussed.Comment: 7 pages, 1 figure, submitted to Phys.Rev.

    Search for color-suppressed B hadronic decay processes at the Υ(4S) resonance

    Get PDF
    Using 3.1fb^(-1) of data accumulated at the Υ(4S) by the CLEO-II detector, corresponding to 3.3×10^6 BB̅ pairs, we have searched for the color-suppressed B hadronic decay processes B^(0) → D^(0)(D^(*0))X^0, where X^0 is a light neutral meson π^0, ρ^0, η, η′ or ω. The D^(*0) mesons are reconstructed in D^(*0) → D^(0)π^(0) and the D^0 mesons in D^(0) → K^(-)π^(+), K^(-)π^(+)π^(0) and K^(-)π^(+)π^(+)π^(-) decay modes. No obvious signal is observed. We set 90% C.L. upper limits on these modes, varying from 1.2×10^(-4) for B^(0) → D^(0)π^(0) to 1.9×10^(-3) for B^(0) → D^(*0)η′

    Measurement of the B Semileptonic Branching Fraction with Lepton Tags

    Get PDF
    We have used the CLEO II detector and 2.06fb^(-1) of ϒ(4S) data to measure the B-meson semileptonic branching fraction. The B→Xeν momentum spectrum was obtained over nearly the full momentum range by using charge and kinematic correlations in events with a high-momentum lepton tag and an additional electron. We find B(B→Xeν) = (10.49±0.17±0.43)%, with overall systematic uncertainties less than those of untagged single-lepton measurements. We use this result to calculate the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V_(cb) and to set an upper limit on the fraction of ϒ(4S) decays to final states other than BB̅

    Quantum Fluctuations of the Gravitational Field and Propagation of Light: a Heuristic Approach

    Full text link
    Quantum gravity is quite elusive at the experimental level; thus a lot of interest has been raised by recent searches for quantum gravity effects in the propagation of light from distant sources, like gamma ray bursters and active galactic nuclei, and also in earth-based interferometers, like those used for gravitational wave detection. Here we describe a simple heuristic picture of the quantum fluctuations of the gravitational field that we have proposed recently, and show how to use it to estimate quantum gravity effects in interferometers.Comment: LaTeX2e, 8 pages, 2 eps figures: Talk presented at QED2000, 2nd Workshop on Frontier Tests of Quantum Electrodynamics and Physics of the Vacuum; included in conference proceeding
    corecore